The Taming of the Skew: Asymmetric Inflation Risk and Monetary Policy

Andrea De Polis¹ Leonardo Melosi^{2,4} Ivan Petrella^{3,4}

¹University of Strathclyde & ESCoE

²European University Institute

³Collegio Carlo Alberto & University of Turin

⁴CEPR

Inflation: Drivers and Dynamics 2025 Conference

Macroeconomic risks and monetary policy

- Global post-pandemic events have amplified macroeconomic risks and have led to significant shifts in the balance of macroeconomic risks
 - Pre-pandemic: Contained macro risks and inflation often surprised on the downside
 - Post-pandemic: Higher likelihood of severe downturns and inflation spikes

Macroeconomic risks and monetary policy

- Global post-pandemic events have amplified macroeconomic risks and have led to significant shifts in the balance of macroeconomic risks
 - Pre-pandemic: Contained macro risks and inflation often surprised on the downside
 - Post-pandemic: Higher likelihood of severe downturns and inflation spikes
- Yet, there is little literature on the general equilibrium effects of changes in the balance of macroeconomic risks

Macroeconomic risks and monetary policy

- Global post-pandemic events have **amplified macroeconomic risks** and have led to significant **shifts in the balance of macroeconomic risks**
 - Pre-pandemic: Contained macro risks and inflation often surprised on the downside
 - Post-pandemic: Higher likelihood of severe downturns and inflation spikes
- Yet, there is little literature on the general equilibrium effects of changes in the balance of macroeconomic risks
- We develop a tractable quantitative modeling framework to investigate:
 - How do shifts in the balance of macroeconomic risks influence the economy?
 - How should the central bank respond to changes in the balance of risks?

Model setup

New-Keynesian model with inefficient shocks featuring time-varying asymmetry

- Agents receive news about changes in the skew, shaping their perception of risks
- Evolving perceptions create time-varying belief asymmetry which affect outcomes
- Beliefs asymmetry complicates the trade-off for the central bank

Model setup

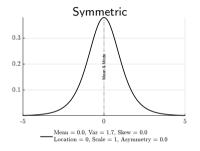
New-Keynesian model with inefficient shocks featuring time-varying asymmetry

- Agents receive news about changes in the skew, shaping their perception of risks
- Evolving perceptions create time-varying belief asymmetry which affect outcomes
- Beliefs asymmetry complicates the trade-off for the central bank

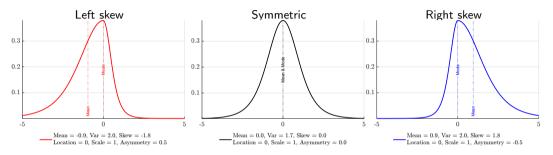
Representation Theorem

Up to first-order, a model with asymmetric risks has an equivalent belief representation

- Analytical solution for optimal monetary policy
- Tractable risk analysis in quantitative DSGE models

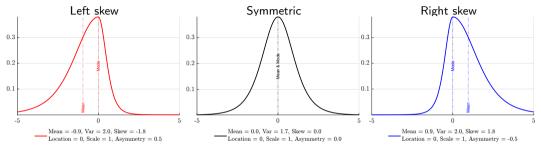


In linear model, with symmetric risk, no first-order effects (certainty equivalence)



In linear model, with symmetric risk, no first-order effects (certainty equivalence)

Asymmetry: drives a wedge between the mean and the mode of the distribution

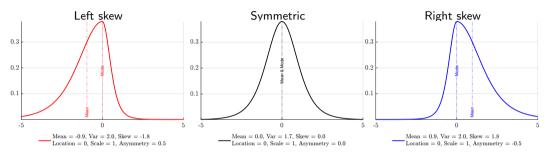


In linear model, with symmetric risk, no first-order effects (certainty equivalence)

Asymmetry: drives a wedge between the mean and the mode of the distribution

$$Skew \approx \frac{Mean - Mode}{Sdev}$$

Skewness: measures the tilt in the balance of risks



In linear model, with symmetric risk, no first-order effects (certainty equivalence)

Asymmetry: drives a wedge between the mean and the mode of the distribution

 $Mean \approx Mode + Sdev \times Skew$

Asymmetric risk affects equilibrium outcomes, even at first order!

Main contributions

1. Optimal monetary policy with asymmetric risks

Main contributions

- 1. Optimal monetary policy with asymmetric risks
 - → Central bank to lean against the perceived balance of inflation risks

- 2. Tracking the balance of risks in real-time
 - → Strong evidence of time-varying balance of risks to inflation

Main contributions

1. Optimal monetary policy with asymmetric risks

→ Central bank to lean against the perceived balance of inflation risks

2. Tracking the balance of risks in <u>real-time</u>

→ Strong evidence of time-varying balance of risks to inflation

3. Effect of asymmetric risks on the economy

- \hookrightarrow Embedding skewness in an empirical DSGE model

Related literature

- Risk management approach to monetary policy: Dolado et al. (2004), Surico (2007), Kilian & Manganelli (2007, 2008), Cecchetti (2008), Moccero & Gnabo (2015), Evans et al. (2020)
- Flexible inflation targeting: Svensson (1997), Clarida et al. (1999), Giannoni & Woodford (2004), Clarida (2020)
- (Asymmetric) policy rules: Söderström (2002), Woodford (2003), Dolado et al. (2004, 2005), Galí (2008), Evans et al. (2020), Bianchi et al. (2021)
- Inflation forecasting & tail risks: Cogley & Sargent (2005), Stock & Watson (2007), Faust & Wright (2013), Manzan & Zerom (2013, 2015), Andrade et al. (2014), Adams et al. (2021), Hilscher et al. (2022), López-Salido & Loria (2024), Le Bihan et al. (2024)

-1	1		- 1					
1.	ln	+1	· / \	d	11	ct		r
	111	LI	\cup	u	и	しし		1

2. Macroeconomic Effects of Shift in Risks: Belief Representation

Balance of risks in real-time

4. Structural policy analysis

5. Conclusion:

Consider standard the New-Keynesian Phillips Curve

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t, \quad u_t \sim \mathcal{F}(\mu, \sigma, \varrho_{u,t})$$

Consider standard the New-Keynesian Phillips Curve

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t, \quad u_t \sim \mathcal{F}(\mu, \sigma, \varrho_{u,t})$$

We assume

lacktriangle Agents expect no shocks in their central scenario; e.g., $\mu=0$ (can be relaxed)

Consider standard the New-Keynesian Phillips Curve

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t, \quad u_t \sim \mathcal{F}(\mu, \sigma, \varrho_{u,t})$$

We assume

- lacktriangle Agents expect no shocks in their central scenario; e.g., $\mu=0$ (can be relaxed)
- 2 $\mathcal{F}(\mu, \sigma, \varrho_{u,t})$ is a two-piece distribution with time-varying asymmetry, such that

$$E_t(u_{t+j}) = \varkappa \sigma \varrho_{u,t+j}, \quad \varkappa > 0$$

▶ Two-pieces distributions

Consider standard the New-Keynesian Phillips Curve

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t, \quad u_t \sim \mathcal{F}(\mu, \sigma, \varrho_{u,t})$$

We assume

- lacktriangle Agents expect no shocks in their central scenario; e.g., $\mu=0$ (can be relaxed)
- **2** $\mathcal{F}(\mu, \sigma, \varrho_{u,t})$ is a two-piece distribution with time-varying asymmetry, such that

$$E_t(u_{t+i}) = \varkappa \sigma \varrho_{u,t+i}, \quad \varkappa > 0$$

▶ Two-pieces distributions

3 Agents receive noisy signals about the evolving asymmetry of \mathcal{F}_{t+j}

$$s_t^j = \varrho_{u,t+j} + \eta_t^j, \quad \forall j \in \{1, \dots, J\}$$

Cost-push shocks defined as a sequence of dummy surprise and anticipated shocks

$$u_t \equiv \sum_{j=0}^{J} \varphi_{t-j}^j.$$

Cost-push shocks defined as a sequence of dummy surprise and anticipated shocks

$$u_t \equiv \sum_{j=0}^{J} \varphi_{t-j}^j.$$

1 Dummy anticipated shocks ensure that expectation revisions are consistent

$$\varphi_t^j = E_t u_{t+j} - E_{t-1} u_{t+j} = \varkappa \sigma \left(E_t \varrho_{u,t+j} - E_{t-1} \varrho_{u,t+j} \right), \quad \forall j \in \{1, \dots, J\}$$

Cost-push shocks defined as a sequence of dummy surprise and anticipated shocks

$$u_t \equiv \sum_{j=0}^{J} \varphi_{t-j}^j.$$

1 Dummy anticipated shocks ensure that expectation revisions are consistent

$$\varphi_t^j = E_t u_{t+j} - E_{t-1} u_{t+j} = \varkappa \sigma \left(E_t \varrho_{u,t+j} - E_{t-1} \varrho_{u,t+j} \right), \quad \forall j \in \{1, \dots, J\}$$

2 Dummy surprise shocks φ_t^0 ensure that <u>realized</u> cost-push shocks are consistent

$$\varphi_t^0 = u_t - \sum_{j=1}^J \varphi_{t-j}^j$$

Cost-push shocks defined as a sequence of dummy surprise and anticipated shocks

$$u_t \equiv \sum_{j=0}^{J} \varphi_{t-j}^j.$$

• Dummy anticipated shocks ensure that expectation revisions are consistent

$$\varphi_t^j = E_t u_{t+j} - E_{t-1} u_{t+j} = \varkappa \sigma \left(E_t \varrho_{u,t+j} - E_{t-1} \varrho_{u,t+j} \right), \quad \forall j \in \{1, \dots, J\}$$

2 Dummy surprise shocks φ^0_t ensure that <u>realized</u> cost-push shocks are consistent

$$\varphi_t^0 = u_t - \sum_{j=1}^J \varphi_{t-j}^j$$

Up to the first-order, a model with (time-varying) asymmetric risks can be represented as one with symmetric, zero-mean shocks, augmented by additional beliefs shocks.

$$\max_{\hat{x}_{t}, \hat{\pi}_{t}} \quad \frac{1}{2} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left(\hat{\pi}_{t}^{2} + \alpha_{x} \hat{x}_{t}^{2} \right)
\text{s.t.} \quad \hat{x}_{t} = E_{t} \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_{t} - E_{t} \hat{\pi}_{t+1} \right),
\hat{\pi}_{t} = \kappa \hat{x}_{t} + \beta E_{t} \hat{\pi}_{t+1} + u_{t}$$
(NKPC)

$$\begin{aligned} \max_{\hat{x}_t, \hat{\pi}_t} \quad & \frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{\pi}_t^2 + \alpha_x \hat{x}_t^2 \right) \\ \text{s.t.} \quad & \hat{x}_t = E_t \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_t - E_t \hat{\pi}_{t+1} \right), \\ & \hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + \underbrace{u_t} \end{aligned} \tag{IS}$$

For
$$u_t \sim \mathcal{F}(0, \sigma_u, \rho_{u,t})$$
, if $\rho_{u,t} \neq 0 \Rightarrow E_t u_{t+1} \neq 0$

$$\begin{aligned} \max_{\hat{x}_t, \hat{\pi}_t} \quad & \frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{\pi}_t^2 + \alpha_x \hat{x}_t^2 \right) \\ \text{s.t.} \quad & \hat{x}_t = E_t \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_t - E_t \hat{\pi}_{t+1} \right), \\ & \hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t \end{aligned} \tag{IS}$$

For $u_t \sim \mathcal{F}(0, \sigma_u, \varrho_{u,t})$, if $\varrho_{u,t} \neq 0 \Rightarrow E_t u_{t+1} \neq 0$

• Skew in the shock distribution affects expectations of endogenous variables:

$$E_t \hat{\pi}_{t+1} = \vartheta_\pi \varrho_{u,t} \neq 0, \qquad E_t \hat{x}_{t+1} = \vartheta_x \varrho_{u,t} \neq 0$$

$$\begin{aligned} \max_{\hat{x}_{t}, \hat{\pi}_{t}} & \frac{1}{2} E_{0} \sum_{t=0}^{\infty} \beta^{t} \left(\hat{\pi}_{t}^{2} + \alpha_{x} \hat{x}_{t}^{2} \right) \\ \text{s.t.} & \hat{x}_{t} = E_{t} \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_{t} - E_{t} \hat{\pi}_{t+1} \right), \\ & \hat{\pi}_{t} = \kappa \hat{x}_{t} + \beta E_{t} \hat{\pi}_{t+1} + u_{t} \end{aligned} \tag{IS}$$

For $u_t \sim \mathcal{F}(0, \sigma_u, \varrho_{u,t})$, if $\varrho_{u,t} \neq 0 \Rightarrow E_t u_{t+1} \neq 0$

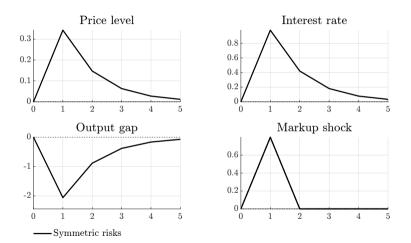
• Skew in the shock distribution affects expectations of endogenous variables:

$$E_t \hat{\pi}_{t+1} = \vartheta_\pi \varrho_{u,t} \neq 0, \qquad E_t \hat{x}_{t+1} = \vartheta_x \varrho_{u,t} \neq 0$$

2 Belief representation (J=1):

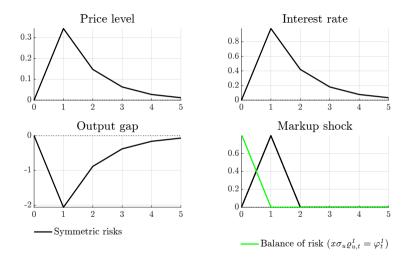
$$u_t = \varepsilon_{u,t} + \varphi_t^0 + \varphi_{t-1}^1, \quad \varepsilon_{u,t} \sim N_t(0,\sigma_u)$$

Optimal Response to a Cost-push shock (in period 1)



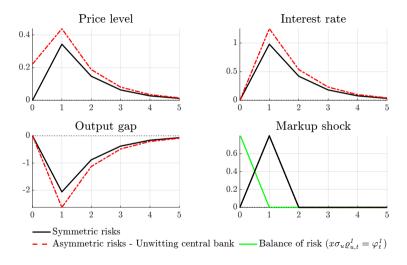
Cost-push shock lead to a tradeoff in the (optimal) MP response

Response to (anticipated) upside inflation risk



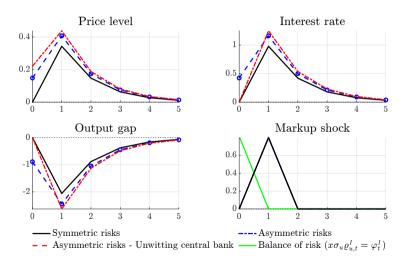
Agents expect upside risks one period ahead.

Response to (anticipated) upside inflation risk



What if the central bank is unaware of the balance of risks?

Response to (anticipated) upside inflation risk



Optimal monetary policy response: lean against inflation risk!

-1	1		- 1					
1.	ln	+1	· / \	d	11	ct		r
	111	LI	\cup	u	и	しし		1

2. Macroeconomic Effects of Shift in Risks: Belief Representation

3. Balance of risks in real-time

4. Structural policy analysis

Conclusion

Tracking Time-varying Risk

We estimate shifts in the balance of QoQ US core PCE inflation risks in real-time

$$\pi_t \sim skt_{\nu}(\mu_t, \sigma_t, \varrho_t)$$

 μ_t : location (central scenario)

 σ_t : scale

 ϱ_t : asymmetry

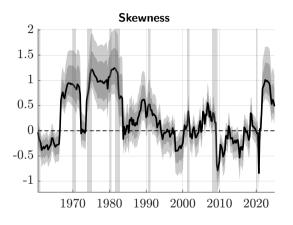
Permanent and transitory decomposition of parameters

► Specification

- Score driven approach to parameters' time variation (as in Delle Monache,
 De Polis & Petrella 2024)

 Updates
 Estimation
 MC Simulations
- Akin to an extension of Stock & Watson (2007) with time-varying skewness

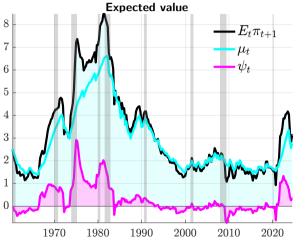
Time-varying moments: skewness



- Mean and Volatility in line with UCSV estimates

 Mean and Vol
- Regime-like dynamics, similar to high- and low-inflation states.
- Recent skew have greatly reduced, but still persistently above 0.

Time-varying moments: Mean decomposition



$$E_t \pi_{t+h} = \mu_{t+h} + \underbrace{g(\nu)\sigma_{t+h}\varrho_{t+h}}_{\psi_{t+h}}$$

- Upside risks in 1970-80s and post-pandemic
- $\bullet \ \, \text{Not much downside risk post GFG} \\ \qquad \qquad \qquad \downarrow \\ \\ \text{negative skew but low vol}$

Real-time predictive accuracy & robustness

- Significant out-of-sample gains in real-time
 - substantial gains across all horizons compared to Stock & Watson (2007) Table
 - omitting skewness deteriorates accuracy
 - event forecast marginally improves upon SPF's annual predictions. Table

- Pattern of time-varying skewness similar for
 - inflation at different frequencies, e.g. yoy inflation skew $\pi_t^{y \circ y}$
 - different measures of inflation, e.g. PCE, CPI, Core CPI, PCE defl. Other measures
- Model's skewness anticipates model-free measures of asymmetry
 - data-based conditional skew, e.g. rolling quantile skew or sample skew

-1	1			- 1			
1.	ln	±ν	$^{\prime}$	\sim	1.1	Ηı	r
	111	LI	\cup	u	и		1

2. Macroeconomic Effects of Shift in Risks: Belief Representation

Balance of risks in real-time

4. Structural policy analysis

Conclusion

Skewed risk in a standard DSGE model

We augment Smets & Wouters (2007) with a belief representation:

$$\hat{\pi}_t = \kappa_1 \hat{\pi}_{t-1} + \kappa_2 \hat{m} c_t + \kappa_3 E_t \hat{\pi}_{t+1} + \sum_{j=0}^J \varphi_{t-j}^j.$$

Anticipated shocks calibrated to match the *revisions in the balance of inflation risks* extracted from real-time data

Skewed risk in a standard DSGE model

We augment Smets & Wouters (2007) with a belief representation:

$$\hat{\pi}_t = \kappa_1 \hat{\pi}_{t-1} + \kappa_2 \hat{m} c_t + \kappa_3 E_t \hat{\pi}_{t+1} + \sum_{j=0}^J \varphi_{t-j}^j.$$

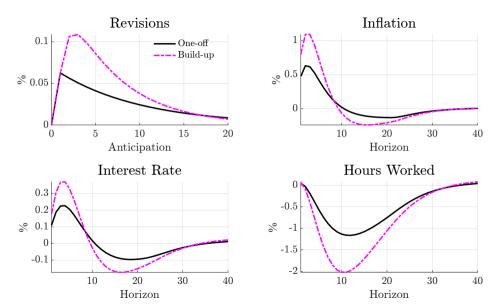
Anticipated shocks calibrated to match the *revisions in the balance of inflation risks* extracted from real-time data

The model can be solved using standard techniques and has a solution

$$s_t = \Gamma s_{t-1} + \Omega e_t,$$

where e_t includes all shocks $arepsilon_t$ and the dummy shocks $\{arphi_t^j\}_{j=0}^J$

Macroeconomic effects of shifts in the balance of risk



Central bank commits to a path of $\hat{\pi}_{t+i|t}^{\star}$ to offset the effect of asymmetric risks

$$\hat{i}_t = \rho_i \hat{i}_{t-1} + (1 - \rho_i) \left[\phi_x \hat{x}_t + \phi_\pi \left(\hat{\pi}_t - \sum_{j=1}^J \hat{\pi}_{t|t-j}^* \right) \right]$$

Central bank commits to a path of $\hat{\pi}^{\star}_{t+i|t}$ to offset the effect of asymmetric risks

$$\hat{i}_t = \rho_i \hat{i}_{t-1} + (1 - \rho_i) \left[\phi_x \hat{x}_t + \phi_\pi \left(\hat{\pi}_t - \sum_{j=1}^J \hat{\pi}^\star_{t|t-j} \right) \right]$$
Forward guidance shocks

Central bank commits to a path of $\hat{\pi}_{t+i|t}^{\star}$ to offset the effect of asymmetric risks

$$\hat{i}_t = \rho_i \hat{i}_{t-1} + (1 - \rho_i) \left[\phi_x \hat{x}_t + \phi_\pi \left(\hat{\pi}_t - \sum_{j=1}^J \hat{\pi}_{t|t-j}^* \right) \right]$$

• Forward guidance as announced tilts to inflation target

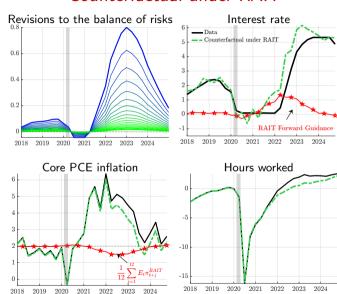
Central bank commits to a path of $\hat{\pi}_{t+i|t}^{\star}$ to offset the effect of asymmetric risks

$$\hat{i}_t = \rho_i \hat{i}_{t-1} + (1 - \rho_i) \left[\phi_x \hat{x}_t + \phi_\pi \left(\hat{\pi}_t - \sum_{j=1}^J \hat{\pi}_{t|t-j}^* \right) \right]$$

- Forward guidance as announced tilts to inflation target
- $\{\hat{\pi}_{t+i|t}^{\star}\}_{i=0}^{J}$ chosen to <u>offset skewed risk</u>

$$E\left[\pi_{t+h} \mid \{\varphi_t^j\}_{j=1}^J\right] + E\left[\pi_{t+h} \mid \{\pi_{t+j|t}^{\star}\}_{j=1}^J\right] = 0$$

Counterfactual under RAIT



-1				- 1				
1.	In	1 + 1	$^{\prime}$	\sim	1.1	$rac{1}{2}$		
		ロレエ	\cup	u	и	しし		

2. Macroeconomic Effects of Shift in Risks: Belief Representation

3. Balance of risks in real-time

4. Structural policy analysis

5. Conclusions

Conclusions

- Asymmetric inflation risks: strong evidence in the data
- Beliefs representation: tractable framework for time-varying macroeconomic risks
- Optimal policy: lean against the perceived balance of risks SEP 2024
- Macroeconomic response: revisions to balance of risks affect the economy
- Risk-Adjusted Inflation Targeting: communications about future interest rates influenced by the balance of risks

The Taming of the Skew: Asymmetric Inflation Risk and Monetary Policy

Andrea De Polis¹ Leonardo Melosi^{2,4} Ivan Petrella^{3,4}

¹University of Strathclyde & ESCoE

²European University Institute

³Collegio Carlo Alberto & University of Turin

⁴CEPR

Inflation: Drivers and Dynamics 2025 Conference

The Model Environment

$$\mathbf{A}_0 \mathbf{z}_t = \mathbf{A}_f E_t \mathbf{z}_{t+1} + \mathbf{A}_b \mathbf{z}_{t-1} + \mathbf{B}_s \boldsymbol{\epsilon}_t^s + \mathbf{b}_a \boldsymbol{\epsilon}_t^a. \tag{1}$$

The vectors of i.i.d. disturbances includes:

- ullet all the symmetric shocks (e.g., normally distributed): ϵ_t^s
- an asymmetric shock: ϵ^a_t , with distribution $f(\mu_a, \sigma_a, \varrho_a)$, where μ_a denotes the mode, σ_a the scale, and ϱ_a an asymmetry parameter that measures the degree of skewness.

◆ back

Model Solution

The solution of the linear rational expectations model with time-varying skewness is:

$$\mathbf{z}_{t} = \mathbf{\Theta}_{1} \mathbf{z}_{t-1} + \mathbf{\Theta}_{0} \left[\boldsymbol{\epsilon}_{t}^{s} \ \boldsymbol{\epsilon}_{t}^{a} \right]' + \mathbf{\Theta}_{y} \sum_{i=1}^{\infty} \mathbf{\Theta}_{f}^{j-1} \mathbf{\Theta}_{z} \mathbf{\Xi} E_{t} \boldsymbol{\epsilon}_{t+j}^{a}, \tag{2}$$

where the matrices Θ_0 , Θ_1 , Θ_y , and Θ_z are functions of A_0 , A_b , A_f , B_s , and b_a , and Ξ is a selection vector.

Model Solution

The solution of the linear rational expectations model with time-varying skewness is:

$$\mathbf{z}_{t} = \mathbf{\Theta}_{1} \mathbf{z}_{t-1} + \mathbf{\Theta}_{0} \left[\boldsymbol{\epsilon}_{t}^{s} \ \boldsymbol{\epsilon}_{t}^{a} \right]' + \mathbf{\Theta}_{y} \sum_{j=1}^{\infty} \mathbf{\Theta}_{f}^{j-1} \mathbf{\Theta}_{z} \mathbf{\Xi} E_{t} \boldsymbol{\epsilon}_{t+j}^{a}, \tag{2}$$

where the matrices Θ_0 , Θ_1 , Θ_y , and Θ_z are functions of A_0 , A_b , A_f , B_s , and b_a , and Ξ is a selection vector.

We assume (a) agents expect no shocks in their central scenario: $\mu_a=0$; (b) that asymmetric risk can be represented as a two-piece asymmetric distribution with time varying asymmetry $\to E_t(\epsilon^a_{t+j})=\varkappa\sigma_a\varrho_{a,t+j}$

Asymmetric risk and macroeconomic outcomes

• Rational agents solve the signal extraction problem leading to the following update in expectations about the asymmetry parameter $j \in \{1,...,J\}$ periods ahead: $\varrho_{a,t}^j \equiv E_t \varrho_{a,t+j} - E_{t-1} \varrho_{a,t+j}$.

• Revisions in risk affect the macroeconomy:

$$\frac{\partial \mathbf{z}_t}{\partial \varrho_{a.t}^j} = \mathbf{\Theta}_y \mathbf{\Theta}_f^{j-1} \mathbf{\Theta}_z \mathbf{\Xi} \varkappa \sigma_a, \tag{3}$$

4 back

Belief representation

We show that, up to a first-order approximation, a model with (time-varying) asymmetric risks can be equivalently represented as one with symmetric, zero-mean shocks, augmented by additional beliefs shocks.

- Define the asymmetric shock as: $\epsilon^a_t \equiv \sum_{j=0}^J \varphi^j_{t-j}$, where φ^j_t denotes the dummy beliefs shocks.
- The equilibrium dynamics of the beliefs representation are identical to the ones of the actual economy if:

 - 2 $\varphi_t^0 = \epsilon_{a,t} \sum_{j=1}^J \varphi_{t-j}^j$ (i.e. dummy shocks are belief shocks, they never realize)

◆ back

Definition of a Unimodal Two-Piece Distribution

A unimodal two-piece distribution is a probability density function (PDF) that:

- Has a single peak (unimodal) at a central point (e.g., mode or median).
- Is defined by **two different functions** on either side of the peak.
- Can be symmetric or asymmetric, depending on the parameterization.

General form:

$$f(x) = \begin{cases} A_L g_L(x), & x < c \\ A_R g_R(x), & x \ge c \end{cases}$$

where c is the splitting point, and A_L , A_R are normalization constants to ensure the total probability integrates to 1.

Definition of a Unimodal Two-Piece Distribution

A unimodal two-piece distribution is a probability density function (PDF) that:

- Has a single peak (unimodal) at a central point (e.g., mode or median).
- Is defined by **two different functions** on either side of the peak.
- Can be **symmetric** or **asymmetric**, depending on the parameterization.

Two-Piece Normal Distribution:

$$f(x) = \begin{cases} \frac{2\sigma_L}{\sigma_L + \sigma_R} \phi\left(\frac{x - c}{\sigma_L}\right), & x < c\\ \frac{2\sigma_R}{\sigma_L + \sigma_R} \phi\left(\frac{x - c}{\sigma_R}\right), & x \ge c \end{cases}$$

when $\sigma_L = \sigma_R$ we recover the symmetric Normal distribution.

◆ Back

$$\frac{1}{2}E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{\pi}_t^2 + \alpha_x \hat{x}_t^2 \right)$$
s.t.
$$\hat{x}_t = E_t \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_t - E_t \hat{\pi}_{t+1} \right)$$

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t,$$

$$u_t = \varepsilon_{u,t},$$

$$\frac{1}{2}E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{\pi}_t^2 + \alpha_x \hat{x}_t^2 \right)$$
s.t.
$$\hat{x}_t = E_t \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_t - E_t \hat{\pi}_{t+1} \right)$$

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t,$$

$$u_t = \varepsilon_{u,t}, \qquad \varepsilon_{u,t} \sim N(0, \sigma_u)$$

Solution:

$$E_t \bar{p}_{t+1} = \eta \bar{p}_t, \ E_t \varepsilon_{u,t+1} = 0$$

and the optimal policy rule

$$\hat{i}_t = -(1 - \eta) \left[1 - \sigma \frac{\kappa}{\alpha_n} \right] \bar{p}_t,$$

such that $\hat{x}_t = \eta \hat{x}_{t-1} - \frac{\kappa}{\alpha_n} \lambda u_t$.

◆ Back

$$\frac{1}{2}E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{\pi}_t^2 + \alpha_x \hat{x}_t^2 \right)$$
s.t.
$$\hat{x}_t = E_t \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_t - E_t \hat{\pi}_{t+1} \right)$$

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t,$$

$$u_t = \varepsilon_{u,t}, \qquad \varepsilon_{u,t} \sim \mathcal{F}_t(0, \sigma_u, \varrho_u, \ldots)$$

Solution:

$$E_t \bar{p}_{t+1} \neq \eta \bar{p}_t, \quad E_t \varepsilon_{u,t+1} \neq 0$$

and the optimal policy rule

$$\hat{i}_t \neq -(1-\eta) \left[1 - \sigma \frac{\kappa}{\alpha_n} \right] \bar{p}_t,$$

such that $\hat{x}_t \neq \eta \hat{x}_{t-1} - \frac{\kappa}{\alpha} \lambda u_t$.

$$\frac{1}{2}E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{\pi}_t^2 + \alpha_x \hat{x}_t^2\right)$$

$$s.t. \quad \hat{x}_t = E_t \hat{x}_{t+1} - \varsigma^{-1} \left(\hat{i}_t - E_t \hat{\pi}_{t+1}\right)$$

$$\hat{\pi}_t = \kappa \hat{x}_t + \beta E_t \hat{\pi}_{t+1} + u_t,$$

$$u_t = \varepsilon_{u,t} + \varphi_t^0 + \varphi_{t-1}^1, \qquad \varepsilon_{u,t} \sim N(0, \sigma_u)$$

Solution (belief representation):

$$E_t \bar{p}_{t+1} = \eta \bar{p}_t + \zeta E_t \varphi_{t+1}^1, \quad E_t \varepsilon_{u,t+1} = 0$$

and the optimal policy rule

$$\hat{i}_t = -(1 - \eta) \left[1 - \sigma \frac{\kappa}{\alpha_r} \right] \left(\bar{p}_t + \lambda \varphi_t^{\mathbf{1}} \right),$$

such that
$$\hat{x}_t = \eta \hat{x}_{t-1} - \frac{\kappa}{\alpha_x} \left(\lambda u_t + \zeta \varphi_t^1 \right)$$
.

Model: specification

 $\pi_t \sim skt_{\nu}(\mu_t, \sigma_t, \varrho_t)$

 μ_t : location (central scenario)

 σ_t : scale

 ϱ_t : asymmetry

Model: specification

$$\pi_t \sim skt_{\nu}(\mu_t, \sigma_t, \varrho_t)$$

 μ_t : location (central scenario)

 σ_t : scale

 ϱ_t : asymmetry

Let
$$f_t = (\mu_t, \log \sigma_t, \operatorname{atanh} \varrho_t)'$$
, then $f_{i,t+1} = \bar{f}_{i,t+1} + \tilde{f}_{i,t+1}$:

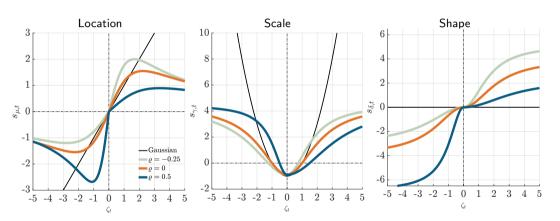
$$\bar{f}_{i,t+1} = \bar{f}_{i,t} + a_i s_{i,t}$$
 (Permanent)

$$\tilde{f}_{i,t+1} = \phi_i \tilde{f}_t + b_i s_{i,t}$$
 (Transitory)

where
$$s_t = \mathbf{S}_{t-1} \nabla_t$$
, $\nabla_t = \frac{\partial \ell_t}{\partial f_t}$, and $\mathbf{S}_{t-1} = \mathcal{I}_{t-1}^{-1} = \mathbb{E}_{t-1} \left[\frac{\partial \ell_t}{\partial f_t \partial f_t'} \right]^{-1}$.

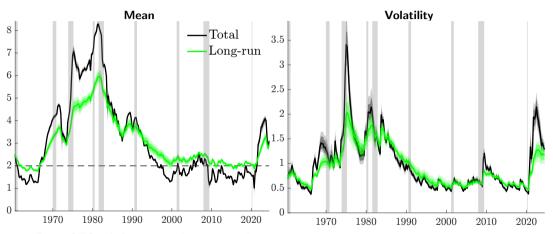
- s_t maps ε_t into an appropriate update for f_t (Creal et al. 2013, Harvey 2013)
- The model tracks skewness only when it is present (Delle Monache et al. 2024)

Moments updating



◆ Back

Time-varying moments: mean & volatility



- Post GFC, deflationary bias around persistent component
- Low and stable volatility since mid '80s

Comparison with UCSV

			CRPS	Decomp	osition		Event Forecasts	
	MSFE	CRPS	Right	Left	Center	$\pi_{t+h} < 1.5$	$1.5 \le \pi_{t+h} \ge 2.5$	$\pi_{t+h} > 2.5$
h = 1	0.969 (0.011)	0.995 (0.333)	0.998 (0.424)	0.992 (0.186)	0.995 (0.364)	0.956 (0.001)	0.966 (0.004)	0.967 (0.001)
h = 4	0.925 (0.000)	0.958 (0.001)	0.979 (0.052)	0.940 (0.000)	0.954 (0.000)	0.981 (0.107)	$0.981 \atop (0.115)$	0.987 (0.064)
h = 8	0.884 (0.000)	0.927 (0.000)	0.939 (0.000)	0.921 (0.000)	0.920 (0.000)	0.975 (0.074)	$0.970 \atop (0.014)$	$\frac{1.007}{(0.702)}$

◆ Back

Is skewness improving predictions?

h = 1	h = 2	h = 3	h = 4	h = 8
0.865	0.901	0.926	0.970	1.006 (0.939)
0.957 (0.001)	0.970 (0.000)	0.969 (0.000)	0.980 (0.006)	0.995 (0.066)
CRPS o	decompos	sition		
0.945 (0.000)	0.945 (0.000)	0.952 (0.000)	0.966 (0.000)	0.985 (0.002)
0.966 (0.000)	0.991 (0.142)	0.983 (0.006)	0.993 (0.146)	1.004 (0.913)
0.959 (0.001)	0.975 (0.008)	0.972 (0.000)	0.984 (0.007)	0.997 (0.147)
	0.865 (0.000) 0.957 (0.001) CRPS (0.000) 0.945 (0.000) 0.966 (0.000) 0.959	0.865 0.901 (0.000) (0.000) 0.957 0.970 (0.001) (0.000) CRPS decompose 0.945 0.945 (0.000) (0.000) 0.966 0.991 (0.000) (0.142) 0.959 0.975	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Results are reported as the ratio of the Skt model over a specification without skewness.

Comparison with SPF (event forecasts)

We compare the end-of-year event forecasts by means of the Brier score

$$b_t = \frac{1}{N} \sum_{n=1}^{N} (p_t - o_t)^2$$

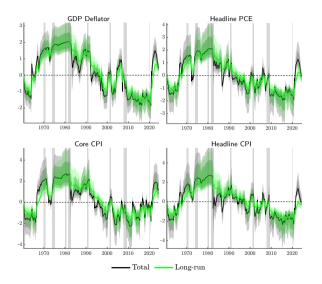
where p_t is the predicted probability of the event, and o_t is a boolean outcome indicator

		$\begin{aligned} & \pi_t^{Q4} < 1.5\% \\ & \text{h} = 1 & \text{h} = 2 & \text{h} = 3 & \text{h} = 4 \\ & 1.216 & 0.929 & 1.217 & 0.890 \end{aligned}$		1.	$\pi_t^{Q4}>2.5\%$							
	h = 1	h=2	h = 3	h = 4	h = 1	h=2	h = 3	h = 4	h = 1	h=2	h = 3	h = 4
SPF	1.216	0.929	1.217	0.890	1.118	0.928	1.376	1.120	0.910	0.235	0.530	0.847
UCSV	0.998	1.063	1.023	0.995	1.053	1.033	1.031	0.984	0.917	0.738	0.831	0.838

Results are reported as the ratio of the Skt model over the SPF's.

◆ Back

Alternative Measures of Inflation: Skewness



YoY Inflation



Aligning the beliefs representation to real-time estimates of risks

Set surprise and anticipated dummy shocks, $\{\varphi^j\}_{j=0}^J$, as follows:

$$\begin{bmatrix} \varepsilon_t^p - \sum_{j=1}^J \varphi_{t-j}^j \\ \psi_{t+1|t} - \psi_{t+1|t-1} \\ \vdots \\ \psi_{t+J|t} - \psi_{t+J|t-1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0}_{1 \times J} \\ \Omega^S & \Omega^N \end{bmatrix} \begin{bmatrix} \varphi_t^0 \\ \varphi_t^1 \\ \vdots \\ \varphi_t^J \end{bmatrix},$$

 Ω^S and Ω^N : Impact matrices of the dummy shocks on inflation expectations

1. Ensure the realization of shocks is the same in the model and its representation

Aligning the beliefs representation to real-time estimates of risks

Set surprise and anticipated dummy shocks, $\{\varphi^j\}_{j=0}^J$, as follows:

$$\begin{bmatrix} \varepsilon_t^p - \sum_{j=1}^J \varphi_{t-j}^j \\ \psi_{t+1|t} - \psi_{t+1|t-1} \\ \vdots \\ \psi_{t+J|t} - \psi_{t+J|t-1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0}_{1 \times J} \\ \Omega^S & \Omega^N \end{bmatrix} \begin{bmatrix} \varphi_t^0 \\ \varphi_t^1 \\ \vdots \\ \varphi_t^J \end{bmatrix},$$

 Ω^S and Ω^N : Impact matrices of the dummy shocks on inflation expectations

- 1. Ensure the realization of shocks is the same in the model and its representation
- 2. Set dummy surprise and news shocks to match the bias on inflation expectations, $\psi_{t+h|t}$ due to the balance of risks estimated in real time

▶ Back

RAIT: implementation

$$E\left[\pi_{t+h} \mid \{\varphi_t^j\}_{j=1}^J\right] + E\left[\pi_{t+h} \mid \{\pi_{t+j|t}^{\star}\}_{j=1}^J\right] = 0$$

RAIT: implementation

$$E\left[\pi_{t+h} \mid \{\varphi_{t}^{j}\}_{j=1}^{J}\right] + E\left[\pi_{t+h} \mid \{\pi_{t+j|t}^{\star}\}_{j=1}^{J}\right] = 0$$

$$\downarrow$$

$$-\begin{bmatrix} \psi_{t+1|t} - \psi_{t+1|t-1} \\ \psi_{t+2|t} - \psi_{t+2|t-1} \\ \vdots \\ \psi_{t+J|t} - \psi_{t+J|t-1} \end{bmatrix} = \Omega_{FG}\begin{bmatrix} \hat{\pi}_{t+1|t}^{\star} \\ \hat{\pi}_{t+2|t}^{\star} \\ \vdots \\ \hat{\pi}_{t+J|t}^{\star} \end{bmatrix}$$

where Ω_{FG} is the impact matrix of FG shocks on inflation expectations

▶ Back

RAIT: implementation

$$E\left[\pi_{t+h} \mid \{\varphi_{t}^{j}\}_{j=1}^{J}\right] + E\left[\pi_{t+h} \mid \{\pi_{t+j|t}^{\star}\}_{j=1}^{J}\right] = 0$$

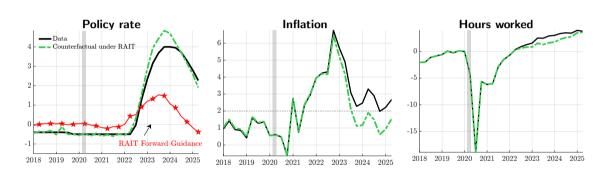
$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} \hat{\pi}_{t+1|t}^{\star} \\ \hat{\pi}_{t+2|t}^{\star} \\ \vdots \\ \hat{\pi}_{t+J|t}^{\star} \end{bmatrix} = -\Omega_{FG}^{-1} \begin{bmatrix} \psi_{t+1|t} - \psi_{t+1|t-1} \\ \psi_{t+2|t} - \psi_{t+2|t-1} \\ \vdots \\ \psi_{t+J|t} - \psi_{t+J|t-1} \end{bmatrix}$$

Pin down FG shocks, communicating asymmetric response to inflation

▶ Back

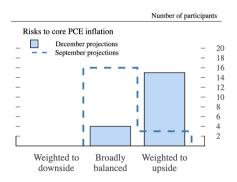
The Euro Area



◆ US

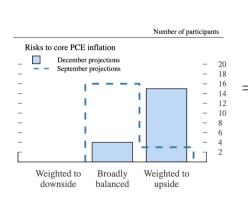
Asymmetric risks: FOMC Dec 2024

• Increased perception of upside risks to inflation (tariffs?)



Asymmetric risks: FOMC Dec 2024

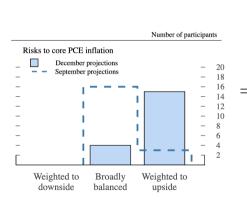
- Increased perception of upside risks to inflation (tariffs?)
- Lead to anticipating tighter stance



Percent					
X7		1	Media	n ¹	
Variable	2024	2025	2026	2027	Longer run
Change in real GDP September projection	2.5 2.0	2.1 2.0	2.0 2.0	1.9 2.0	1.8
Unemployment rate September projection	4.2 4.4	$\frac{4.3}{4.4}$	$\frac{4.3}{4.3}$	$\frac{4.3}{4.2}$	4.2
PCE inflation September projection	2.4 2.3	$\frac{2.5}{2.1}$	$\frac{2.1}{2.0}$	$\frac{2.0}{2.0}$	2.0
Core PCE inflation ⁴ September projection	2.8 2.6	$\frac{2.5}{2.2}$	$\frac{2.2}{2.0}$	$\frac{2.0}{2.0}$! ! !
Memo: Projected appropriate policy path					
Federal funds rate September projection	4.4 4.4	3.9 3.4	3.4 2.9	3.1 2.9	3.0

Asymmetric risks: FOMC Dec 2024

- Increased perception of upside risks to inflation (tariffs?)
- Lead to anticipating tighter stance



37 1 11			$Median^1$					
Variable	2024	2025	2026	2027	Longer run			
Change in real GDP September projection	2.5 2.0	2.1 2.0	2.0 2.0	1.9 2.0	1.8 1.8			
Unemployment rate September projection	4.2 4.4	$\frac{4.3}{4.4}$	$\frac{4.3}{4.3}$	$\frac{4.3}{4.2}$	4.2 4.2			
PCE inflation September projection	$\frac{2.4}{2.3}$	$\frac{2.5}{2.1}$	$\frac{2.1}{2.0}$	$\frac{2.0}{2.0}$	2.0 2.0			
Core PCE inflation 4 September projection	2.8 2.6	$\frac{2.5}{2.2}$	$\frac{2.2}{2.0}$	$\frac{2.0}{2.0}$				
Memo: Projected appropriate policy path								
Federal funds rate September projection	4.4 4.4	3.9 3.4	3.4 2.9	3.1 2.9	3.0 2.9			

"The Committee will assess incoming data, the evolving outlook, and the balance of risks. We're not on any preset course." FOMC, 18/12/2024. ◆ Back

Summary of Economic Projections, 12/2024

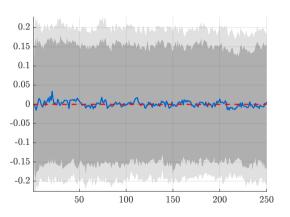
Percent

**			Media	n^1			Cent	ral Tendenc	y^2)	$Range^3$		
Variable	2024	2025	2026	2027	Longer run	2024	2025	2026	2027	Longer run	2024	2025	2026	2027	Longer run
Change in real GDP September projection	2.5 2.0	2.1 2.0	2.0 2.0	1.9 2.0	1.8 1.8	2.4-2.5 $1.9-2.1$	1.8-2.2 1.8-2.2	1.9-2.1 1.9-2.3		$1.7-2.0 \\ 1.7-2.0$	2.3-2.7 $1.8-2.6$	1.6-2.5 $1.3-2.5$	1.4-2.5 $1.7-2.5$		1.7-2.5 1.7-2.5
Unemployment rate September projection	$\frac{4.2}{4.4}$	$\frac{4.3}{4.4}$	$\frac{4.3}{4.3}$	$\frac{4.3}{4.2}$	4.2 4.2	4.2 $4.3-4.4$	$\substack{4.2 - 4.5 \\ 4.2 - 4.5}$	$\substack{4.1-4.4\\4.0-4.4}$	4.0 – 4.4 $4.0 – 4.4$	3.9–4.3 3.9–4.3	$\substack{4.2 \\ 4.2 - 4.5}$	$\substack{4.2 - 4.5 \\ 4.2 - 4.7}$	3.9 – 4.6 $3.9 – 4.5$	$3.8 – 4.5 \\ 3.8 – 4.5$	
PCE inflation September projection	$\frac{2.4}{2.3}$	$\frac{2.5}{2.1}$	$\frac{2.1}{2.0}$	$\frac{2.0}{2.0}$	2.0 2.0	$\substack{2.4-2.5\\2.2-2.4}$	2.3-2.6 $2.1-2.2$	$2.0-2.2 \\ 2.0$	$\frac{2.0}{2.0}$	2.0 2.0	$\substack{2.4-2.7\\2.1-2.7}$	$\substack{2.1-2.9\\2.1-2.4}$	2.0 – 2.6 2.0 – 2.2	2.0 – 2.4 2.0 – 2.1	2.0 2.0
Core PCE inflation ⁴ September projection	$\frac{2.8}{2.6}$	$\frac{2.5}{2.2}$	$\frac{2.2}{2.0}$	$\frac{2.0}{2.0}$		$\substack{2.8-2.9\\2.6-2.7}$	$\substack{2.5-2.7\\2.1-2.3}$	$2.0-2.3 \\ 2.0$	$\frac{2.0}{2.0}$		$\substack{2.8-2.9\\2.4-2.9}$	$\substack{2.1 - 3.2 \\ 2.1 - 2.5}$	$\substack{2.0-2.7\\2.0-2.2}$	$\substack{2.0-2.6\\2.0-2.2}$	
Memo: Projected appropriate policy path					1										
Federal funds rate September projection	$\frac{4.4}{4.4}$	$\frac{3.9}{3.4}$	$\frac{3.4}{2.9}$	$\frac{3.1}{2.9}$	3.0 2.9	$4.4 – 4.6 \\ 4.4 – 4.6$	3.6 – 4.1 3.1 – 3.6	3.1 – 3.6 2.6 – 3.6	2.9 – 3.6 2.6 – 3.6		$\substack{4.4 - 4.6 \\ 4.1 - 4.9}$	$3.1 – 4.4 \\ 2.9 – 4.1$	$2.4 – 3.9 \\ 2.4 – 3.9$	$2.4 – 3.9 \\ 2.4 – 3.9$	

◆ Back

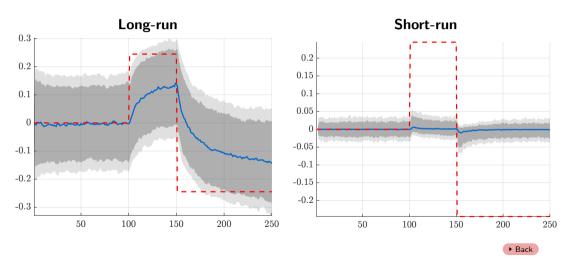
Simulation Exercise

Would the model find any skewness when there is none in the data?



Simulation Exercise

How does the model handle sudden structural breaks?



Adaptive Metropolis-Hastings

Given the vector of static parameters θ :

where $r(\tilde{\alpha}^s)$ is an arbitrary function of the local acceptance rate $\tilde{\alpha}^s$ to target a 30% acceptance rate. We set $s=100,\,U=750$ and H=1000.

▶ Back